Inorganic Chemistry

Efficient Near-Infrared Downconversion and Energy Transfer Mechanism of Ce³⁺/Yb³⁺ Codoped Calcium Scandate Phosphor

Jing Li,[†] Li Chen,^{*,†} Zhendong Hao,[‡] Xia Zhang,[‡] Ligong Zhang,[‡] Yongshi Luo,[‡] and Jiahua Zhang^{*,‡}

[†]School of Basic Sciences, ChangChun University of Technology, A1018 Huguang Road, Changchun 130012, China [‡]State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China

ABSTRACT: An efficient near-infrared (NIR) downconversion has been demonstrated in $CaSc_2O_4$: Ce^{3+}/Yb^{3+} phosphor. Doping concentration optimized $CaSc_2O_4$: $1\%Ce^{3+}/5\%Yb^{3+}$ shows stronger NIR emission than doping concentration also optimized typical YAG: $1\%Ce^{3+}/5\%Yb^{3+}$ under 470 nm excitation. The NIR emission from 900 to 1100 nm is enhanced by a factor of 2.4. In addition, the main emission peak of Yb³⁺ in the $CaSc_2O_4$ around 976 nm matches better with the optimal spectral response of the c-Si solar cell. The visible and NIR spectra and the decay curves of Ce^{3+} : $5d \rightarrow 4f$ emission were used to demonstrate the energy transfer from Ce^{3+} ions to Yb³⁺ ions. The downconversion phenomenon has been observed under the direct excitation of Ce^{3+} ions. On analyzing the dependence of energy transfer rate on Yb³⁺ ion concentration, we reveal that the energy transfer (ET) from Ce^{3+} ions to Yb³⁺ ions in $CaSc_2O_4$ occurs mainly by the single-step ET process. Considering that the luminescence efficiency of $CaSc_2O_4$: Ce^{3+} is comparable to that of

commercial phosphor YAG: Ce^{3+} , the estimated maximum energy transfer efficiency reaches 58% in the $CaSc_2O_4$: $1\%Ce^{3+}/15\%$ Yb³⁺ sample, indicating that $CaSc_2O_4$: Ce^{3+}/Yb^{3+} sample has the potential in improving the conversion efficiency of c-Si solar cells.

■ INTRODUCTION

Due to converting sunlight into electricity directly, photovoltaic solar cells are considered as the prime candidates for effective large-scale capture and conversion of the sustainable solar energy.^{1,2} At present, the commercial crystalline silicon solar cell (c-Si) dominating the photovoltaic market has an efficiency of only 18%, because the terrestrial spectrum of the solar radiation on the surface of the earth (AM 1.5 G) has a large energy mismatch with the response spectrum of silicon solar cells.^{2,3} Silicon solar cells have the strongest absorption around 800-1100 nm.⁴ Due to higher reflection and absorption, the response becomes weak in the short wavelength region, especially in the 300-500 nm region.⁵ However, the solar spectrum is still very strong in this region.⁶ Downconversion (DC) materials have provided a promising way for the enhancement of solar cell efficiency, which can convert the high-energy photons to near-infrared (NIR) photons.⁷ Choosing the suitable DC material, the actual efficiency of a silicon solar cell can be improved to about 40%,⁷ well over the efficiency limit (29%) estimated by Shockley and Queisser.⁸ DC has also been reported in several RE³⁺/Yb³⁺ couples, such as Pr^{3+}/Yb^{3+} , Tm^{3+}/Yb^{3+} , Tb^{3+}/Yb^{3+} , Er^{3+}/Yb^{3+} , Nd^{3+}/Yb^{3+} , Ho^{3+}/Yb^{3+} , and so on.⁹⁻¹⁴ Yb³⁺ ion is suitable as an acceptor and emitter because it has an excited state at approximately 10 000 cm⁻¹, just above the band edge of crystalline silicon.¹⁵ However, the absorption transition of Pr³⁺, Tb³⁺, Er³⁺, Ho³⁺, and Tm^{3+} as a sensitizer arises from the forbidden $4f \rightarrow 4f$ transitions, which are naturally weak in intensity and narrow in bandwidth.^{6,16} Unlike these RE ions, the absorption of Ce³⁺ is originated from the allowed 4f \rightarrow 5d electric-dipole transitions in the broad spectral range, which results in a very high absorption cross section of about $10^{-18}~{\rm cm}^2.^{16}$ The value of the 4f \rightarrow 4f transitions of RE³⁺ donor ions is merely $10^{-21}~{\rm cm}^2.^{16}$ Moreover, the excitation and emission spectra of Ce³⁺ can be tuned by the host materials, which means that DC from Ce³⁺ to Yb³⁺ can be enhanced by choosing appropriate host materials.¹⁷ The DC of Ce³⁺/Yb³⁺ combination has been reported in various oxide hosts, such as Y_3Al_5O_{12}, borates, silicates, and phosphates.^{6,18–21}

 $CaSc_2O_4$ as the host lattice which has an orthorhombic $CaFe_2O_4$ structure with space group *Pnam* (No. 62) exhibits low crystal field symmetry and strong crystal field intensity.²² Low-symmetry hosts exert a crystal field containing more uneven components around the dopant ions which can improve the transition probabilities. The strong crystal field can lead to the large Stark splitting of the energy level of dopant ions, which can improve the energy transfer efficiency. Furthermore, $CaSc_2O_4$ has a low cutoff phonon frequency of 540 cm⁻¹. The low cutoff phonon frequency can inhibit the nonradiative multiphonon relaxation in the DC process.²² It has been reported as a promising host for achieving efficient DC

Received: February 4, 2015 Published: May 6, 2015 luminescence in some DC materials such as the green-emitting $CaSc_2O_4$: Ce^{3+} and $CaSc_2O_4$: Tb^{3+} and red-emitting $CaSc_2O_4$: $Eu^{3+,23-25}$ $CaSc_2O_4$ host is proper for doped Ce^{3+} ions, in which the energy of the $4f \rightarrow 5d$ electric-dipole transitions for Ce^{3+} locates in the visible region. Besides, the absorption region also matches well with the high-energy part of the solar spectrum, where the solar cells conversion efficiency is very low. In particular, for $CaSc_2O_4$: Ce^{3+} phosphor, its intense green emission under blue light excitation is comparable to the commercial $Y_3Al_5O_{12}$ (YAG): Ce^{3+} phosphor.²³ The Ce^{3+}/Yb^{3+} codoped YAG material as an efficient conversion material for solar cell applications has been studied recently.^{6,18} To our knowledge, the DC properties of Ce^{3+}/Yb^{3+} in $CaSc_2O_4$ have not been demonstrated yet.

In the current work, we report the efficient NIR DC in doping concentration optimized $CaSc_2O_4$: $1\%Ce^{3+}/5\%Yb^{3+}$ sample, and the NIR emission from 900 to 1100 nm is enhanced by a factor of 2.4, in comparison with that in doping concentration also optimized typical phosphor YAG: $1\%Ce^{3+}/$ $5\%Yb^{3+}$. We study the effect of Yb³⁺ concentration on emission spectra, decay lifetime, energy transfer efficiency, and energy transfer mechanism in $CaSc_2O_4$: Ce^{3+}/Yb^{3+} sample. Results show $CaSc_2O_4$: Ce^{3+}/Yb^{3+} phosphor is a proper material for application in solar cells.

EXPERIMENTAL SECTION

Sample Preparation. The $CaSc_2O_4$: $1\%Ce^{3+}/x\%Yb^{3+}$ powder samples were synthesized by a solid state reaction.²⁵ The constituent oxides or carbonates $CaCO_3$, Sc_2O_3 , Yb_2O_3 , and CeO_2 were employed as raw materials, which were mixed homogeneously by an agate mortar for 30 min and placed in a crucible with a lid. The crucible was buried by carbon sticks and sintered at 1500 °C for 4 h in CO-reducing atmosphere.

For comparison, in parallel, the YAG: $1\%Ce^{3+}/x\%Yb^{3+}$ powder samples were also prepared by the conventional solid state reaction method. Y_2O_3 , Al_2O_3 , Yb_2O_3 , and CeO_2 were mixed in a ratio molar of $(Y_{1-1\%-x\%}Ce_{1\%}Yb_{x\%})_3Al_5O_{12}$. After a good mixing in an agate mortar, the mixture was sintered at 1600 °C for 5 h under a CO reducing atmosphere. Both $CaSc_2O_4$ and YAG samples produced exhibit high crystallinity as evidenced by XRD data. The two powder samples $CaSc_2O_4$: $1\%Ce^{3+}/5\%Yb^{3+}$ and YAG: $1\%Ce^{3+}/5\%Yb^{3+}$ have been optimized to obtain the highest NIR emission intensity of Yb³⁺ in each host. It turns out that the optimal fractional concentrations of the dopants in the two hosts are the same.

Measurements and Characterization. Powder X-ray diffraction (XRD) data was collected using Cu K α radiation ($\lambda = 1.54056$ Å) on a Bruker D8 advance diffractometer. The excitation and emission spectra were measured using a FLS920 spectrometer (Edinburgh Instruments, U.K.). The fluorescence decay curves of Ce³⁺ were measured by a FL920 fluorescence lifetime spectrometer (Edinburgh Instruments Ltd.). All of the measurements above were performed at room temperature.

RESULTS AND DISCUSSION

The crystal structures characterized by the XRD patterns are shown in Figure 1a for phosphors with nominal compositions of CaSc₂O₄: 1%Ce³⁺/x%Yb³⁺ (x = 0, 5, 15, 30). All experimental XRD patterns of the samples are indexed well to the standard cards of JCPD card 20-0234. CaSc₂O₄ has an orthorhombic CaFe₂O₄ structure with space group *Pnam* (No. 62) and lattice constants $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$, as shown in Figure 1b. In this structure, Ca²⁺ is 8-fold with a large effective ionic radius (1.12 Å) and Sc³⁺ 6-fold with a small radius (0.745 Å). The unit cell of CaSc₂O₄ shows there is only one site for Ca²⁺ and two coordinated sites for Sc³⁺. The

Figure 1. (a) XRD patterns for samples with nominal compositions of $CaSc_2O_4$: $1\%Ce^{3+}/x\%Yb^{3+}$ (*x* = 0, 5, 15, 30). (b) Unit cell of $CaSc_2O_4$.

occupied site of Ce³⁺ is a Ca²⁺ site in the CaSc₂O₄; the ionic radius of Ce³⁺ (1.143 Å) is close to that of Ca^{2+,23} The Yb³⁺ ions with a large ionic radius (0.868 Å) occupy Sc³⁺ sites in CaSc₂O₄, which has been reported in Yb³⁺ singly doped CaSc₂O₄ sample.²⁶ No impurity phase is detected in all XRD patterns, demonstrating that Ca³⁺ and Yb³⁺ substitutions have no effect on the phase structure of CaSc₂O₄ host.

In order to investigate the DC properties of Ce^{3+}/Yb^{3+} codoped $CaSc_2O_4$ phosphor, the excitation (PLE) and emission (PL) spectra of samples as direct evidence of $Ce^{3+} \rightarrow Yb^{3+}$ energy transfer (ET) were measured and are shown in Figures 2 and 3, respectively. In Figure 2, the intense excitation band centered at around 466 nm for monitoring Ce^{3+} emission at

Figure 2. Excitation spectra of Ce^{3+} emission centered at 511 nm (black line) and Yb³⁺ emission at 1004 nm (red line) in $CaSc_2O_4$: 1% $Ce^{3+}/5\%$ Yb³⁺ sample.

Inorganic Chemistry

Figure 3. Visible and NIR emission spectra of the samples with nominal compositions of $CaSc_2O_4$: $1\%Ce^{3+}/x\%Yb^{3+}$ (x = 0, 1, 2, 5, 10, 15, 30) under 466 nm excitation.

511 nm can be assigned to the broad-band absorption of Ce³⁺: $4f \rightarrow 5d$. The Ce³⁺: $4f \rightarrow 5d$ absorption is also observed by monitoring Yb³⁺ emission at 1004 nm, which indicates the presence of Ce³⁺ \rightarrow Yb³⁺ ET.

The emission spectra covering the visible and near-infrared spectral range for samples with a fixed Ce^{3+} concentration (1%) and various concentrations of Yb³⁺ are presented under 466 nm excitation corresponding to Ce^{3+} : 4f \rightarrow 5d absorption in Figure 3. In the visible region (450-700 nm), the broad emission band observed around 511 nm originates from the allowed electronic transition of the excited state 5d to ground state 4f of Ce^{3+} ions. The Ce^{3+} emission can be decomposed into two Gaussian bands centered at about 511 nm (19 570 cm⁻¹) and 563 nm (17762 cm^{-1}), which are attributed to the transitions from the lowest Stark level of the 5d excited state to different Stark levels $({}^{2}F_{5/2}$ and ${}^{2}F_{7/2})$ of the 4f ground state of Ce³⁺, respectively. The energy difference is about 1808 cm⁻¹, which is very close to the splitting of the 4f ground state of Ce³⁺ ion.² In the NIR region (900-1100 nm), a strong emission band around 1000 nm is observed for the Ce³⁺ and Yb³⁺ codoped samples, which is originated from the Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition. The appearance of the NIR emission of Yb³⁺ under direct excitation of Ce^{3+} is another evidence for the existence of ET from Ce^{3+} to Yb^{3+} . It is noticed that the emission intensity of Ce³⁺: 5d \rightarrow 4f has a decline with increased Yb³⁺ ion concentration. Simultaneously, the NIR emission of Yb^{3+} first increases and then decreases when the Yb3+ concentration exceeds 5% due to concentration quenching.¹¹ The decreased emission intensity of Ce³⁺ and increased NIR emission intensity of Yb³⁺ when Yb³⁺ concentration increases from 0% to 5% are also proof for the existence of ET from Ce^{3+} to Yb^{3+} . In $Ce^{3+}/$ Yb³⁺ codoped CaSc₂O₄ material, x = 5% represents optimal Yb³⁺ doped concentration which is the same as the reported typical phosphor YAG: Ce³⁺/Yb³⁺.⁶

The PLE and PL spectra confirm that ET from Ce^{3+} to Yb^{3+} does take place in $CaSc_2O_4$ host lattice. However, more detailed measurements are required in order to understand the energy transfer mechanism clearly. The schematic energy level diagrams with the involved ET process are depicted in Figure 4, in which the proposed energy band diagram of Ce^{3+} is based on the PLE and PL spectra above, and that of Yb^{3+} is from the report of Yb^{3+} singly doped $CaSc_2O_4$ sample by Gaume et al.²⁶ As shown in the scheme, the ET from the Ce^{3+} to the Yb^{3+} has two possible routes. (1) Cooperative ET, the energy of Ce^{3+} is

Figure 4. Schematic energy level diagrams of Ce^{3+} and Yb^{3+} with the involved ET process.

simultaneously transferred to two nearby Yb³⁺ ions, resulting in two emitting photons of Yb³⁺ with a wavelength around 1000 nm. (2) Single-step ET, it yields only a single NIR photon for each blue photon excitation. It should be noted that a secondorder ET is typically 10³ times less possible than a first-order one, which makes cooperative ET occur with extremely low probability.²⁸ Recently, Meijerink et al. revealed that a singlestep ET instead of a cooperative process took place in the Ce³⁺/Yb³⁺ codoped YAG material.⁶

For a cooperative ET process, the donor Ce^{3+} transfers its energy simultaneously to two Yb³⁺ ions nearby. For the pair of acceptors, the energy transfer rate (W_{COOP}) is proportional to the square of acceptor concentration. W_{COOP} can be simply written as $W_{COOP} = Cx^2$, where C represents the energy transfer coefficient and x is the Yb³⁺ concentration. For single-step ET process, the Ce³⁺ ion transfers its energy to only one Yb³⁺ ion. Considering that the energy transfer rate (W_{S-S}) is proportional to the acceptor concentration, it can be taken as $W_{S-S} = C'x$.

To judge the process of the ET from Ce^{3+} ions to Yb^{3+} ions in $CaSc_2O_4$ sample, we analyzed the dependence of the energy transfer rate upon Yb^{3+} ion concentration. Figure 5 shows the decay curves of Ce^{3+} : $Sd \rightarrow 4f$ emission at S11 nm in $CaSc_2O_4$: $1\%Ce^{3+}/x\%Yb^{3+}$ (x = 0, 1, 2, 5, 10, 15) under 466 nm

Figure 5. Decay curves of Ce³⁺: 5d \rightarrow 4f emission under 466 nm excitation in CaSc₂O₄: 1%Ce³⁺/x%Yb³⁺ (x = 0, 1, 2, 5, 10, 15).

excitation. As Yb³⁺ concentration increases, the decays rapidly speed up confirming remarkable Ce³⁺ \rightarrow Yb³⁺ ET. The lifetimes τ_0 and τ of Ce³⁺ in Ce³⁺ singly and Ce³⁺/Yb³⁺ doubly doped samples are calculated by integrating the area under the corresponding decay curves with the normalized initial

Table 1. Relationship of Ce³⁺ Lifetime and Energy Transfer Efficiency (η_{ETE}) with Different Concentrations of Yb³⁺ Ions

Yb ³⁺ concentrations (%)	τ (ns)	η_{ETE} (%)
0	27.09	0
1	24.02	11
2	22.82	16
5	16.68	38
10	14.89	45
15	11.36	58

intensity. The lifetime values are shown in Table 1. The energy transfer rate (W_{Ce-Yb}) can be obtained by

$$W_{\rm Ce-Yb} = \frac{1}{\tau} - \frac{1}{\tau_0} \tag{1}$$

In this way, we obtained the Yb^{3+} ion concentration dependence of the energy transfer rates and plotted in a double-logarithmic diagram, as shown in Figure 6. When the

Figure 6. Plot (log–log) of the energy transfer rate versus the Yb³⁺ concentration in CaSc₂O₄: 1%Ce³⁺/x%Yb³⁺ (x = 0, 1, 2, 5, 10, 15).

concentration of Yb³⁺ ions increases from 1% to 15%, the slope is found to be around 1, indicating the ET from Ce³⁺ ions to Yb³⁺ ions is dominated by the single-step ET process rather than a cooperative ET process. On the basis of above data and analysis, we propose that its probability is low for Ce³⁺ \rightarrow Yb³⁺ ET to get a one-to-two photon process of DC in CaSc₂O₄ material.

With Yb³⁺ concentration increasing, Ce³⁺ lifetime gradually decreases due to the ET from Ce³⁺ to Yb³⁺, as shown in Figure 5. The variable distribution of Yb³⁺ ions around the Ce³⁺ ions leads to the variety of energy transfer rates; thus, all decay curves exhibit nonexponential characteristics. The energy transfer efficiency (η_{ETE}) can be determined from decay curves. The η_{ETE} is defined as the ratio of Ce³⁺ depopulated by ET to Yb³⁺ over the total number of Ce³⁺ excited. By dividing the integrated intensity of the decay curve of Ce³⁺/Yb³⁺ codoped

 $\rm CaSc_2O_4$ sample by that of the $\rm Ce^{3+}$ single doped one, the $\eta_{\rm ETE}$ is obtained as a function of Yb^{3+} concentration

$$\eta_{\text{ETE},x\%\text{Yb}} = 1 - \frac{\tau}{\tau_0} \tag{2}$$

The estimated $\eta_{\rm ETE}$ of samples presented in Table 1 exhibit a gradual increase with increasing Yb³⁺ concentration. It is worth mentioning that $\eta_{\rm ETE}$ reaches 58% for CaSc₂O₄: 1%Ce³⁺/15% Yb³⁺ sample.

Figure 7 shows the normalized PLE and PL spectra of the doping concentration optimized $CaSc_2O_4$: $1\%Ce^{3+}/5\%Yb^{3+}$.

Figure 7. Normalized PLE spectrum of $CaSc_2O_4$: $1\%Ce^{3+}/5\%Yb^{3+}$ (green line), PL spectra of $CaSc_2O_4$: $1\%Ce^{3+}/5\%Yb^{3+}$ (red line), and YAG: $1\%Ce^{3+}/5\%Yb^{3+}$ (black line) excited at 470 nm with the same power density. AM 1.5 G solar spectrum (blue line) and spectral response of c-Si (purple line) are the background.

The background is the AM 1.5 G solar spectrum and the spectral response of c-Si. As shown in Figure 7, the PLE spectrum of CaSc₂O₄: 1%Ce³⁺/5%Yb³⁺ consists of a blue PLE band around 466 nm corresponding to the transition from the ground state to the lowest-lying 5d state, which agrees with the maximum photon flux region of the solar spectrum and one ultraviolet (UV) PLE band at 320 nm corresponding to the upper 5d states, respectively. Besides, CaSc₂O₄: 1%Ce³⁺/5% Yb³⁺ gives an intense NIR emission at around 976 nm, matching well with the optimal spectral response of c-Si solar cells. Comparing with doping concentration also optimized typical phosphor YAG: 1%Ce³⁺/5%Yb³⁺, doping concentration optimized CaSc₂O₄: 1%Ce³⁺/5%Yb³⁺ shows the stronger NIR emission. The NIR emission of CaSc₂O₄ sample from 900 to 1100 nm is enhanced by a factor of 2.4 excited at 470 nm with the same power density, which corresponds to the best excitation of Ce³⁺ in YAG: Ce³⁺ sample.²⁹ Furthermore, the main emission peak of Yb³⁺ in the $CaSc_2O_4$ around 976 nm shows better agreement with the optimal spectral response of c-Si compared with that in YAG around 1028 nm. The NIR emission of Yb³⁺ can be used more effectively in the CaSc₂O₄. Therefore, $CaSc_2O_4$ is a promising solar spectral converter for achieving efficient NIR emission for c-Si solar cells.

CONCLUSIONS

In summary, an efficient NIR DC has been demonstrated for the $CaSc_2O_4$: $1\%Ce^{3+}/5\%Yb^{3+}$ sample. Compared with that in doping concentration optimized YAG: $1\%Ce^{3+}/5\%Yb^{3+}$, the NIR emission from 900 to 1100 nm is enhanced by a factor of

2.4. The main emission peak of Yb³⁺ in the CaSc₂O₄ around 976 nm matches well with the optimal spectral response of the c-Si solar cell. Furthermore, the mechanism of the DC process in CaSc₂O₄: Ce³⁺/Yb³⁺ samples has been investigated carefully. On the basis of the analysis of the dependence of the energy transfer rate on Yb³⁺ ion concentration, we propose that the ET from Ce³⁺ ions to Yb³⁺ ions occurs mainly by the single-step ET process. The estimated maximum energy transfer efficiency (η_{ETE}) reaches 58% in the CaSc₂O₄: 1%Ce³⁺/15%Yb³⁺ sample. The current experimental results indicate that CaSc₂O₄: Ce³⁺/Yb³⁺ sample is a promising DC material for application in solar cells.

AUTHOR INFORMATION

Corresponding Authors

*Phone: +86-431-8571-7353. E-mail: chenli@ccut.edu.cn. *Phone: +86-431-8617-6317. Fax: +86-431-8617-6317. E-mail: zhangjh@ciomp.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (11474035, 51172226, 61275055, 11274007) and the Natural Science Foundation of Jilin province (201205024).

REFERENCES

- (1) Morton, O. Nature 2006, 443, 19-22.
- (2) M. van der Ende, B.; Aarts, L.; Meijerink, A. Adv. Mater. 2009, 21, 3073–3077.
- (3) Yu, K. H.; Chen, J. H. Nanoscale Res. Lett. 2008, 4, 1-10.
- (4) Richards, B. S. Sol. Energy Mater. Sol. Cells 2006, 90, 2329-2337.
- (5) Strümpel, C.; McCann, M.; Beaucarne, G.; Arkhipov, V.; Slaoui, A.; Švrček, V.; del Caňizo, C.; Tobias, I. Sol. Energy Mater. Sol. Cells

2007, 91, 238–249.

- (6) Yu, D. C.; Rabouw, F. T.; Boon, W. Q.; Kieboom, T.; Ye, S.; Zhang, Q. Y.; Meijerink, A. *Phys. Rev. B* **2014**, *90*, 165126.
- (7) Trupke, T.; Green, M. A.; Würfel, P. J. Appl. Phys. 2002, 92, 1668-1674.
- (8) Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510.

(9) Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Lü, S. Z.; Zhao, H. F. *Phys. Chem. Chem. Phys.* **2014**, *16*, 9289.

(10) Li, J.; Zhang, J. H.; Zhang, X.; Hao, Z. D.; Luo, Y. S. J. Alloys Compd. 2014, 583, 96–99.

(11) Vergeer, P.; Vlugt, T.; Kox, M.; den Hertog, M.; van der Eerden, J.; Meijerink, A. *Phys. Rev. B* **2005**, *71*, 014119.

- (12) Fan, B.; Chlique, C.; Merdrignac-Conanec, O.; Zhang, X. H.; Fan, X. P. J. Phys. Chem. C **2012**, 116, 11652–11657.
- (13) Chen, D.; Yu, Y.; Lin, H.; Huang, P.; Shan, Z.; Wang, Y. Opt. Lett. 2010, 35, 220–222.
- (14) Yu, D. C.; Huang, X. Y.; Ye, S.; Zhang, Q. Y. J. Alloys Compd. **2011**, 509, 9919–9923.
- (15) Zhang, J. H.; Hao, Z. D.; Li, J.; Zhang, X.; Luo, Y. S.; Pan, G. H. Light: Sci. Appl. 2015, 4, e239.
- (16) Chen, D. Q.; Wang, Y. S.; Yu, Y. L.; Huang, P.; Weng, F. Y. J. Appl. Phys. **2008**, 104, 116105.
- (17) Liu, Z.; Li, J.; Yang, L.; Chen, Q.; Chu, Y.; Dai, N. Sol. Energy Mater. Sol. Cells **2014**, 122, 46–50.
- (18) Fang, Z.; Cao, R.; Zhang, F.; Ma, Z.; Dong, G.; Qiu, J. J. Mater. Chem. C 2014, 2, 2204.
- (19) Chen, J.; Zhang, H.; Li, F.; Guo, H. Mater. Chem. Phys. 2011, 128, 191-194.
- (20) Li, Y.; Wang, J.; Zhou, W.; Zhang, G.; Chen, Y.; Su, Q. Appl. Phys. Express 2013, 6, 082301.

- (21) Zhao, L.; Han, L. L.; Wang, Y. H. Opt. Mater. Express 2014, 4, 1456–1464.
- (22) Li, J.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Zhao, J. H.; Luo, Y. S. Appl. Phys. Lett. **2012**, 101, 121905.
- (23) Shimomura, Y.; Kurushima, T.; Kijima, N. J. Electrochem. Soc. 2007, 154, J234–J238.
- (24) Hao, Z. D.; Zhang, J. H.; Zhang, X.; Lü, S. Z.; Wang, X. J. J. Electrochem. Soc. 2009, 156, H193-H196.
- (25) Hao, Z. D.; Zhang, J. H.; Zhang, X.; Wang, X. J. Opt. Mater. 2011, 33, 355–358.
- (26) Gaume, R.; Viana, B.; Derouet, J.; Vivien, D. *Opt. Mater.* 2003, 22, 107–115.

(27) Liu, Y. F.; Zhang, X.; Hao, Z. D.; Lü, W.; Liu, X. Y.; Wang, X. J.; Zhang, J. H. J. Phys. D: Appl. Phys. 2011, 44, 075402.

- (28) Blass, G.; Grabmaier, B. C. Luminescence Materials; Springer-Verlag, Berlin, 1994.
- (29) Wang, L.; Zhang, X.; Hao, Z. D.; Luo, Y. S.; Zhang, J. H.; Wang, X. J. J. Appl. Phys. **2010**, 108, 1.